Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29022, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655304

RESUMO

Traditional approaches to monitoring water quality in aquaculture tanks present numerous limitations, including the inability to provide real-time data, which can lead to improper feeding practices, reduced productivity, and potential environmental risks. To address these challenges, this study aimed to create an accurate water quality monitoring system for Asian seabass fish farming in aquaculture tanks. This was achieved by enhancing the accuracy of low-cost sensors using simple linear regression and validating the IoT system data with YSI Professional Pro. The system's development and validation were conducted over three months, employing professional devices for accuracy assessment. The accuracy of low-cost sensors was significantly improved through simple linear regression. The results demonstrated impressive accuracy levels ranging from 76% to 97%. The relative error values which range from 0.27% to 4% demonstrate a smaller range compared to the values obtained from the YSI probe during the validation process, signifying the enhanced accuracy and reliability of the IoT sensor by using simple linear regression. The system's enhanced accuracy facilitates convenient and reliable real-time water quality monitoring for aquafarmers. Real-time data visualization was achieved through a microcontroller, Thingspeak, Virtuino application, and ESP 8266 Wi-Fi module, providing comprehensive insights into water quality conditions. Overall, this adaptable tool holds promise for accurate water quality management in diverse aquatic farming practices, ultimately leading to improved yields and sustainability.

2.
Animals (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34359224

RESUMO

Nanotechnology is a rapidly developing field due to the emergence of various resistant pathogens and the failure of commercial methods of treatment. AgNPs have emerged as one of the best nanotechnology metal nanoparticles due to their large surface-to-volume ratio and success and efficiency in combating various pathogens over the years, with the biological method of synthesis being the most effective and environmentally friendly method. The primary mode of action of AgNPs against pathogens are via their cytotoxicity, which is influenced by the size and shape of the nanoparticles. The cytotoxicity of the AgNPs gives rise to various theorized mechanisms of action of AgNPs against pathogens such as activation of reactive oxygen species, attachment to cellular membranes, intracellular damage and inducing the viable but non-culturable state (VBNC) of pathogens. This review will be centred on the various theorized mechanisms of actions and its application in the aquaculture, livestock and poultry industries. The application of AgNPs in aquaculture is focused around water treatment, disease control and aquatic nutrition, and in the livestock application it is focused on livestock and poultry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...